Memories search (POST /v4/search) provides minimal-latency search optimized for real-time interactions. This endpoint prioritizes speed over extensive control, making it perfect for chatbots, Q&A systems, and any application where users expect immediate responses.
Basic Search
import Supermemory from 'supermemory';
const client = new Supermemory({
apiKey: process.env.SUPERMEMORY_API_KEY!
});
const results = await client.search.memories({
q: "machine learning applications",
limit: 5
});
console.log(results)
from supermemory import Supermemory
import os
client = Supermemory(api_key=os.environ.get("SUPERMEMORY_API_KEY"))
results = client.search.memories(
q="machine learning applications",
limit=5
)
console.log(results)
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "machine learning applications",
"limit": 5
}'
Sample Output:
{
"results": [
{
"id": "mem_ml_apps_2024",
"memory": "Machine learning applications span numerous industries including healthcare (diagnostic imaging, drug discovery), finance (fraud detection, algorithmic trading), autonomous vehicles (computer vision, path planning), and natural language processing (chatbots, translation services).",
"similarity": 0.92,
"title": "Machine Learning Industry Applications",
"type": "text",
"metadata": {
"topic": "machine-learning",
"industry": "technology",
"created": "2024-01-10"
}
},
{
"id": "mem_ml_healthcare",
"memory": "In healthcare, machine learning enables early disease detection through medical imaging analysis, personalized treatment recommendations, and drug discovery acceleration by predicting molecular behavior.",
"similarity": 0.89,
"title": "ML in Healthcare",
"type": "text"
}
],
"total": 8,
"timing": 87
}
Container Tag Filtering
Filter by user, project, or organization:
const results = await client.search.memories({
q: "project updates",
containerTag: "user_123", // Note: singular, not plural
limit: 10
});
results = client.search.memories(
q="project updates",
container_tag="user_123", # Note: singular, not plural
limit=10
)
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "project updates",
"containerTag": "user_123",
"limit": 10
}'
Threshold Control
Control result quality with similarity threshold:
const results = await client.search.memories({
q: "artificial intelligence research",
threshold: 0.7, // Higher = fewer, more similar results
limit: 10
});
results = client.search.memories(
q="artificial intelligence research",
threshold=0.7, # Higher = fewer, more similar results
limit=10
)
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "artificial intelligence research",
"threshold": 0.7,
"limit": 10
}'
Reranking
Improve result quality with secondary ranking:
const results = await client.search.memories({
q: "quantum computing breakthrough",
rerank: true, // Better relevance, slight latency increase
limit: 5
});
results = client.search.memories(
q="quantum computing breakthrough",
rerank=True, # Better relevance, slight latency increase
limit=5
)
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "quantum computing breakthrough",
"rerank": true,
"limit": 5
}'
Query Rewriting
Improve search accuracy with automatic query expansion:
const results = await client.search.memories({
q: "How do neural networks learn?",
rewriteQuery: true, // +400ms latency but better results
limit: 5
});
results = client.search.memories(
q="How do neural networks learn?",
rewrite_query=True, # +400ms latency but better results
limit=5
)
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "How do neural networks learn?",
"rewriteQuery": true,
"limit": 5
}'
Include Related Content
Include documents, related memories, and summaries:
const results = await client.search.memories({
q: "machine learning trends",
include: {
documents: true, // Include source documents
relatedMemories: true, // Include related memory entries
summaries: true // Include memory summaries
},
limit: 5
});
results = client.search.memories(
q="machine learning trends",
include={
"documents": True, # Include source documents
"relatedMemories": True, # Include related memory entries
"summaries": True # Include memory summaries
},
limit=5
)
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "machine learning trends",
"include": {
"documents": true,
"relatedMemories": true,
"summaries": true
},
"limit": 5
}'
Simple metadata filtering for Memories search:
const results = await client.search.memories({
q: "research findings",
filters: {
AND: [
{ key: "category", value: "science", negate: false },
{ key: "status", value: "published", negate: false }
]
},
limit: 10
});
results = client.search.memories(
q="research findings",
filters={
"AND": [
{"key": "category", "value": "science", "negate": False},
{"key": "status", "value": "published", "negate": False}
]
},
limit=10
)
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "research findings",
"filters": {
"AND": [
{"key": "category", "value": "science", "negate": false},
{"key": "status", "value": "published", "negate": false}
]
},
"limit": 10
}'
Chatbot Example
Optimal configuration for conversational AI:
// Optimized for chatbot responses
const results = await client.search.memories({
q: userMessage,
containerTag: userId,
threshold: 0.6, // Balanced relevance
rerank: false, // Skip for speed
rewriteQuery: false, // Skip for speed
limit: 3 // Few, relevant results
});
// Quick response for chat
const context = results.results
.map(r => r.memory)
.join('\n\n');
# Optimized for chatbot responses
results = client.search.memories(
q=user_message,
container_tag=user_id,
threshold=0.6, # Balanced relevance
rerank=False, # Skip for speed
rewrite_query=False, # Skip for speed
limit=3 # Few, relevant results
)
# Quick response for chat
context = '\n\n'.join([r.memory for r in results.results])
# Optimized for chatbot responses
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "user question here",
"containerTag": "user_123",
"threshold": 0.6,
"rerank": false,
"rewriteQuery": false,
"limit": 3
}'
Complete Memories Search Example
Combining features for comprehensive results:
const results = await client.search.memories({
q: "machine learning model performance",
containerTag: "research_team",
filters: {
AND: [
{ key: "topic", value: "ai", negate: false }
]
},
threshold: 0.7,
rerank: true,
rewriteQuery: false, // Skip for speed
include: {
documents: true,
relatedMemories: false,
summaries: true
},
limit: 5
});
results = client.search.memories(
q="machine learning model performance",
container_tag="research_team",
filters={
"AND": [
{"key": "topic", "value": "ai", "negate": False}
]
},
threshold=0.7,
rerank=True,
rewrite_query=False, # Skip for speed
include={
"documents": True,
"relatedMemories": False,
"summaries": True
},
limit=5
)
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "machine learning model performance",
"containerTag": "research_team",
"filters": {
"AND": [
{"key": "topic", "value": "ai", "negate": false}
]
},
"threshold": 0.7,
"rerank": true,
"rewriteQuery": false,
"include": {
"documents": true,
"relatedMemories": false,
"summaries": true
},
"limit": 5
}'
Hybrid Search Mode
Hybrid search mode allows you to search both memories and document chunks in a single request. When searchMode="hybrid", results contain objects with either a memory key (for memory results) or a chunk key (for chunk results).
Basic Hybrid Search
const results = await client.search.memories({
q: "machine learning best practices",
searchMode: "hybrid", // Search memories + chunks
limit: 10
});
// Handle mixed results
results.results.forEach(result => {
if ('memory' in result) {
console.log('Memory:', result.memory);
} else if ('chunk' in result) {
console.log('Chunk:', result.chunk);
console.log('From document:', result.documents?.[0]?.title);
}
});
results = client.search.memories(
q="machine learning best practices",
search_mode="hybrid", # Search memories + chunks
limit=10
)
# Handle mixed results
for result in results.results:
if 'memory' in result:
print('Memory:', result['memory'])
elif 'chunk' in result:
print('Chunk:', result['chunk'])
print('From document:', result.get('documents', [{}])[0].get('title'))
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "machine learning best practices",
"searchMode": "hybrid",
"limit": 10
}'
When to Use Hybrid Mode
Use hybrid mode when:
- You want comprehensive search across both memories and documents
- Memories might not exist for certain queries but document content is available
- You need flexibility to get either memory or document chunk results
- You want a single search endpoint that covers all content types
Use memories-only mode (searchMode="memories") when:
- You only need user memories and preferences
- You want faster, more focused results
- You’re building a personalized chatbot that relies on user context
Handling Mixed Results
When using hybrid mode, you’ll receive mixed results. Here’s how to process them:
const results = await client.search.memories({
q: "quantum computing applications",
searchMode: "hybrid",
limit: 10
});
// Separate memory and chunk results
const memoryResults = results.results.filter(r => 'memory' in r);
const chunkResults = results.results.filter(r => 'chunk' in r);
console.log(`Found ${memoryResults.length} memories and ${chunkResults.length} chunks`);
// Process memories
memoryResults.forEach(mem => {
console.log('Memory:', mem.memory);
console.log('Similarity:', mem.similarity);
});
// Process chunks
chunkResults.forEach(chunk => {
console.log('Chunk:', chunk.chunk);
console.log('Document:', chunk.documents?.[0]?.title);
console.log('Similarity:', chunk.similarity);
});
results = client.search.memories(
q="quantum computing applications",
search_mode="hybrid",
limit=10
)
# Separate memory and chunk results
memory_results = [r for r in results.results if 'memory' in r]
chunk_results = [r for r in results.results if 'chunk' in r]
print(f"Found {len(memory_results)} memories and {len(chunk_results)} chunks")
# Process memories
for mem in memory_results:
print('Memory:', mem['memory'])
print('Similarity:', mem['similarity'])
# Process chunks
for chunk in chunk_results:
print('Chunk:', chunk['chunk'])
print('Document:', chunk.get('documents', [{}])[0].get('title'))
print('Similarity:', chunk['similarity'])
Hybrid Search with All Features
Combining hybrid mode with other features:
const results = await client.search.memories({
q: "research findings on AI",
searchMode: "hybrid",
containerTag: "research_team",
threshold: 0.7,
rerank: true,
include: {
documents: true,
relatedMemories: true,
summaries: true
},
limit: 10
});
// Results are automatically sorted by similarity
// Memory results have 'memory' field, chunk results have 'chunk' field
results.results.forEach(result => {
if ('memory' in result) {
// Memory result
console.log('Memory:', result.memory);
console.log('Context:', result.context);
} else {
// Chunk result
console.log('Chunk:', result.chunk);
console.log('Document:', result.documents?.[0]);
}
});
results = client.search.memories(
q="research findings on AI",
search_mode="hybrid",
container_tag="research_team",
threshold=0.7,
rerank=True,
include={
"documents": True,
"relatedMemories": True,
"summaries": True
},
limit=10
)
# Results are automatically sorted by similarity
# Memory results have 'memory' field, chunk results have 'chunk' field
for result in results.results:
if 'memory' in result:
# Memory result
print('Memory:', result['memory'])
print('Context:', result.get('context'))
else:
# Chunk result
print('Chunk:', result['chunk'])
print('Document:', result.get('documents', [{}])[0])
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "research findings on AI",
"searchMode": "hybrid",
"containerTag": "research_team",
"threshold": 0.7,
"rerank": true,
"include": {
"documents": true,
"relatedMemories": true,
"summaries": true
},
"limit": 10
}'
Important: In hybrid mode, results are automatically merged and sorted by similarity score. Memory results and chunk results are deduplicated - if a chunk is already associated with a memory result, it won’t appear as a separate chunk result.
Common Use Cases
- Chatbots: Basic search with container tag and low threshold
- Q&A Systems: Add reranking for better relevance
- Knowledge Retrieval: Include documents and summaries
- Real-time Search: Skip rewriting and reranking for maximum speed
- Hybrid Search: Use
searchMode="hybrid" when you need comprehensive search across both memories and documents