POST /v4/search) provides minimal-latency search optimized for real-time interactions. This endpoint prioritizes speed over extensive control, making it perfect for chatbots, Q&A systems, and any application where users expect immediate responses.
Basic Search
- TypeScript
- Python
- cURL
Copy
Ask AI
import Supermemory from 'supermemory';
const client = new Supermemory({
apiKey: process.env.SUPERMEMORY_API_KEY!
});
const results = await client.search.memories({
q: "machine learning applications",
limit: 5
});
console.log(results)
Copy
Ask AI
from supermemory import Supermemory
import os
client = Supermemory(api_key=os.environ.get("SUPERMEMORY_API_KEY"))
results = client.search.memories(
q="machine learning applications",
limit=5
)
console.log(results)
Copy
Ask AI
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "machine learning applications",
"limit": 5
}'
Copy
Ask AI
{
"results": [
{
"id": "mem_ml_apps_2024",
"memory": "Machine learning applications span numerous industries including healthcare (diagnostic imaging, drug discovery), finance (fraud detection, algorithmic trading), autonomous vehicles (computer vision, path planning), and natural language processing (chatbots, translation services).",
"similarity": 0.92,
"title": "Machine Learning Industry Applications",
"type": "text",
"metadata": {
"topic": "machine-learning",
"industry": "technology",
"created": "2024-01-10"
}
},
{
"id": "mem_ml_healthcare",
"memory": "In healthcare, machine learning enables early disease detection through medical imaging analysis, personalized treatment recommendations, and drug discovery acceleration by predicting molecular behavior.",
"similarity": 0.89,
"title": "ML in Healthcare",
"type": "text"
}
],
"total": 8,
"timing": 87
}
Container Tag Filtering
Filter by user, project, or organization:- TypeScript
- Python
- cURL
Copy
Ask AI
const results = await client.search.memories({
q: "project updates",
containerTag: "user_123", // Note: singular, not plural
limit: 10
});
Copy
Ask AI
results = client.search.memories(
q="project updates",
container_tag="user_123", # Note: singular, not plural
limit=10
)
Copy
Ask AI
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "project updates",
"containerTag": "user_123",
"limit": 10
}'
Threshold Control
Control result quality with similarity threshold:- TypeScript
- Python
- cURL
Copy
Ask AI
const results = await client.search.memories({
q: "artificial intelligence research",
threshold: 0.7, // Higher = fewer, more similar results
limit: 10
});
Copy
Ask AI
results = client.search.memories(
q="artificial intelligence research",
threshold=0.7, # Higher = fewer, more similar results
limit=10
)
Copy
Ask AI
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "artificial intelligence research",
"threshold": 0.7,
"limit": 10
}'
Reranking
Improve result quality with secondary ranking:- TypeScript
- Python
- cURL
Copy
Ask AI
const results = await client.search.memories({
q: "quantum computing breakthrough",
rerank: true, // Better relevance, slight latency increase
limit: 5
});
Copy
Ask AI
results = client.search.memories(
q="quantum computing breakthrough",
rerank=True, # Better relevance, slight latency increase
limit=5
)
Copy
Ask AI
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "quantum computing breakthrough",
"rerank": true,
"limit": 5
}'
Query Rewriting
Improve search accuracy with automatic query expansion:- TypeScript
- Python
- cURL
Copy
Ask AI
const results = await client.search.memories({
q: "How do neural networks learn?",
rewriteQuery: true, // +400ms latency but better results
limit: 5
});
Copy
Ask AI
results = client.search.memories(
q="How do neural networks learn?",
rewrite_query=True, # +400ms latency but better results
limit=5
)
Copy
Ask AI
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "How do neural networks learn?",
"rewriteQuery": true,
"limit": 5
}'
Include Related Content
Include documents, related memories, and summaries:- TypeScript
- Python
- cURL
Copy
Ask AI
const results = await client.search.memories({
q: "machine learning trends",
include: {
documents: true, // Include source documents
relatedMemories: true, // Include related memory entries
summaries: true // Include memory summaries
},
limit: 5
});
Copy
Ask AI
results = client.search.memories(
q="machine learning trends",
include={
"documents": True, # Include source documents
"relatedMemories": True, # Include related memory entries
"summaries": True # Include memory summaries
},
limit=5
)
Copy
Ask AI
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "machine learning trends",
"include": {
"documents": true,
"relatedMemories": true,
"summaries": true
},
"limit": 5
}'
Metadata Filtering
Simple metadata filtering for Memories search:- TypeScript
- Python
- cURL
Copy
Ask AI
const results = await client.search.memories({
q: "research findings",
filters: {
AND: [
{ key: "category", value: "science", negate: false },
{ key: "status", value: "published", negate: false }
]
},
limit: 10
});
Copy
Ask AI
results = client.search.memories(
q="research findings",
filters={
"AND": [
{"key": "category", "value": "science", "negate": False},
{"key": "status", "value": "published", "negate": False}
]
},
limit=10
)
Copy
Ask AI
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "research findings",
"filters": {
"AND": [
{"key": "category", "value": "science", "negate": false},
{"key": "status", "value": "published", "negate": false}
]
},
"limit": 10
}'
Chatbot Example
Optimal configuration for conversational AI:- TypeScript
- Python
- cURL
Copy
Ask AI
// Optimized for chatbot responses
const results = await client.search.memories({
q: userMessage,
containerTag: userId,
threshold: 0.6, // Balanced relevance
rerank: false, // Skip for speed
rewriteQuery: false, // Skip for speed
limit: 3 // Few, relevant results
});
// Quick response for chat
const context = results.results
.map(r => r.memory)
.join('\n\n');
Copy
Ask AI
# Optimized for chatbot responses
results = client.search.memories(
q=user_message,
container_tag=user_id,
threshold=0.6, # Balanced relevance
rerank=False, # Skip for speed
rewrite_query=False, # Skip for speed
limit=3 # Few, relevant results
)
# Quick response for chat
context = '\n\n'.join([r.memory for r in results.results])
Copy
Ask AI
# Optimized for chatbot responses
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "user question here",
"containerTag": "user_123",
"threshold": 0.6,
"rerank": false,
"rewriteQuery": false,
"limit": 3
}'
Complete Memories Search Example
Combining features for comprehensive results:- TypeScript
- Python
- cURL
Copy
Ask AI
const results = await client.search.memories({
q: "machine learning model performance",
containerTag: "research_team",
filters: {
AND: [
{ key: "topic", value: "ai", negate: false }
]
},
threshold: 0.7,
rerank: true,
rewriteQuery: false, // Skip for speed
include: {
documents: true,
relatedMemories: false,
summaries: true
},
limit: 5
});
Copy
Ask AI
results = client.search.memories(
q="machine learning model performance",
container_tag="research_team",
filters={
"AND": [
{"key": "topic", "value": "ai", "negate": False}
]
},
threshold=0.7,
rerank=True,
rewrite_query=False, # Skip for speed
include={
"documents": True,
"relatedMemories": False,
"summaries": True
},
limit=5
)
Copy
Ask AI
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "machine learning model performance",
"containerTag": "research_team",
"filters": {
"AND": [
{"key": "topic", "value": "ai", "negate": false}
]
},
"threshold": 0.7,
"rerank": true,
"rewriteQuery": false,
"include": {
"documents": true,
"relatedMemories": false,
"summaries": true
},
"limit": 5
}'
Comon Use Cases
- Chatbots: Basic search with container tag and low threshold
- Q&A Systems: Add reranking for better relevance
- Knowledge Retrieval: Include documents and summaries
- Real-time Search: Skip rewriting and reranking for maximum speed