Quick Setup
MCP (Claude/Cursor)
Give your agent a way to reference and search through supermemory docs.
Copy Prompt
Paste one prompt, answer questions, get working code
Claude Code Skill
Interactive guided setup
MCP Server
Give your agent a way to reference and search through supermemory docs.Quick Install
Copy
Ask AI
npx -y install-mcp@latest https://supermemory.ai/docs/mcp --client claude-code --oauth=no -y
claude with: cursor, opencode, or vscode
The Prompt
Copy everything in the code block below and paste it into your AI coding agent. It will ask you questions and generate complete integration code.
Copy prompt below.
Copy prompt below.
Copy
Ask AI
You are integrating Supermemory into my application. Supermemory provides user memory, semantic search, and automatic knowledge extraction for AI applications.
Note: You can always reference the documentation by using the **SearchSupermemoryDocs MCP** or running a web search tool for content on **supermemory.ai/docs**.
STEP 1: ASK ME THESE QUESTIONS
1. What are you building?
- Personal chatbot/assistant
- Team knowledge base
- Customer support bot
- Document Q&A
- Other
2. How do you want to integrate?
- Vercel AI SDK (@supermemory/tools)
- OpenAI plugins
- Direct SDK (supermemory npm/pip)
- Direct API calls
3. Data model?
- Individual users only → containerTag: userId
- Organizations only → containerTag: orgId
- Both users AND orgs → ask for strategy
4. Do you want USER PROFILES?
User profiles are automatically-maintained facts about users (what they like, what they're working on, preferences).
- Yes (RECOMMENDED) → Use client.profile() to get context
- No → Just use search
5. How should I retrieve context?
- OPTION A: One call with search included → profile({ containerTag, q: userMessage })
- OPTION B: Separate calls → profile() for facts, search() for memories
STEP 2: INSTALL
# Get API key: https://console.supermemory.ai
npm install supermemory # or: pip install supermemory
# For Vercel AI SDK: npm install @supermemory/tools
export SUPERMEMORY_API_KEY="sm_..."
STEP 3: CONFIGURE SETTINGS (DO THIS FIRST)
typescript
// PATCH https://api.supermemory.ai/v3/settings
fetch('https://api.supermemory.ai/v3/settings', {
method: 'PATCH',
headers: { 'x-supermemory-api-key': process.env.SUPERMEMORY_API_KEY },
body: JSON.stringify({
shouldLLMFilter: true,
filterPrompt: `This is a [your app description]. containerTag is [userId/orgId]. We store [what data].`
})
})
STEP 4: CONTAINER TAG STRATEGY
Based on their data model answer:
USER-ONLY APP:
typescript
ORG-ONLY APP:
typescript
containerTag: orgId // Org members share memories
BOTH (ask which):
- Option A: `containerTag: \`\${userId}-\${orgId}\``
- Option B: `containerTag: orgId, metadata: { userId }`
- Option C: `containerTag: userId, metadata: { orgId }`
STEP 5: INTEGRATION CODE
Based on their integration choice:
--- VERCEL AI SDK ---
typescript
import { streamText } from 'ai'
import { anthropic } from '@ai-sdk/anthropic'
import { supermemoryTools } from '@supermemory/tools/ai-sdk'
// Option 1: Agent tools (recommended for agentic flows)
const result = await streamText({
model: anthropic('claude-3-5-sonnet-20241022'),
prompt: userMessage,
tools: supermemoryTools(process.env.SUPERMEMORY_API_KEY, {
containerTags: [userId]
})
})
// Agent gets searchMemories, addMemory, fetchMemory tools
// Option 2: Profile middleware (automatic context injection)
import { withSupermemory } from '@supermemory/tools/ai-sdk'
const modelWithMemory = withSupermemory(anthropic('claude-3-5-sonnet-20241022'), userId)
const result = await generateText({
model: modelWithMemory,
messages: [{ role: 'user', content: userMessage }]
})
// Profile is automatically injected into context
--- DIRECT SDK (WITH PROFILES) ---
typescript
import Supermemory from 'supermemory'
const client = new Supermemory()
// Before each LLM call:
const { profile, searchResults } = await client.profile({
containerTag: userId,
q: userMessage // Include this if they chose OPTION A (one call)
// Omit if they chose OPTION B (separate calls)
})
// Build context
const context = `
Static facts: ${profile.static.join('\n')}
Recent context: ${profile.dynamic.join('\n')}
${searchResults ? `Memories: ${searchResults.results.map(r => r.content).join('\n')}` : ''}
`
// Send to LLM
const messages = [
{ role: 'system', content: `User context:\n${context}` },
{ role: 'user', content: userMessage }
]
// After LLM responds:
await client.memories.add({
content: `user: ${userMessage}\nassistant: ${response}`,
containerTag: userId
})
--- DIRECT SDK (NO PROFILES) ---
```typescript
import Supermemory from 'supermemory'
const client = new Supermemory()
// Search for relevant memories
const results = await client.search({
q: userMessage,
containerTag: userId,
searchMode: 'hybrid', // Searches memories + document chunks
limit: 5
})
// Build context
const context = results.results.map(r => r.content).join('\n')
// Send to LLM with context
const messages = [
{ role: 'system', content: `Relevant context:\n${context}` },
{ role: 'user', content: userMessage }
]
// Store the conversation
await client.memories.add({
content: `user: ${userMessage}\nassistant: ${response}`,
containerTag: userId
})
--- PYTHON VERSION ---
python
from supermemory import Supermemory
client = Supermemory()
# With profiles (if they want it)
profile_data = client.profile(
container_tag=user_id,
q=user_message # Include if OPTION A, omit if OPTION B
)
context = f"""
Static: {chr(10).join(profile_data.profile.static)}
Dynamic: {chr(10).join(profile_data.profile.dynamic)}
"""
# Store conversation
client.add(content=f"user: {user_message}\\nassistant: {response}", container_tag=user_id)
--- DIRECT API ---
bash
# Add memory
curl -X POST https://api.supermemory.ai/v3/documents \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"content": "conversation", "containerTag": "userId"}'
# Get profile
curl -X POST https://api.supermemory.ai/v4/profile \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"containerTag": "userId", "q": "search query"}'
# Search
curl -X POST https://api.supermemory.ai/v4/search \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"q": "query", "containerTag": "userId", "searchMode": "hybrid"}'
STEP 6: FILE UPLOADS (if they need it)
typescript
// Files are automatically extracted (PDFs, images with OCR, videos with transcription)
const formData = new FormData()
formData.append('file', fileBlob)
formData.append('containerTag', userId)
await fetch('https://api.supermemory.ai/v3/documents/file', {
method: 'POST',
headers: { 'x-supermemory-api-key': process.env.SUPERMEMORY_API_KEY },
body: formData
})
// Processing is async - check status before assuming searchable
// GET /v3/documents/{documentId}
STEP 7: SEARCH MODES
typescript
// HYBRID (recommended) - searches memories + document chunks
searchMode: 'hybrid'
// MEMORIES ONLY - just extracted memories, no original text
searchMode: 'memories'
STEP 8: METADATA FILTERS (if they need secondary filtering)
typescript
await client.search({
q: query,
containerTag: userId,
filters: {
AND: [
{ key: 'type', value: 'conversation', type: 'string_equal' },
{ key: 'timestamp', value: '2024', type: 'string_contains' }
]
}
})
KEY POINTS:
1. Configure settings FIRST with filterPrompt
2. User profiles = automatic facts about users (profile.static + profile.dynamic)
3. profile({ containerTag, q }) combines profile + search in ONE call
4. Search modes: 'hybrid' (recommended) or 'memories'
5. File extraction is automatic - no config needed
6. Store conversations after each interaction
7. containerTag should match what you put in filterPrompt
TESTING:
bash
# 1. Configure settings
curl -X PATCH https://api.supermemory.ai/v3/settings \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"shouldLLMFilter": true, "filterPrompt": "..."}'
# 2. Add test memory
curl -X POST https://api.supermemory.ai/v3/documents \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"content": "Test", "containerTag": "test_user"}'
# 3. Get profile
curl -X POST https://api.supermemory.ai/v4/profile \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"containerTag": "test_user"}'
NOW:
1. Ask me the 5 questions above
2. Generate complete working code based on my answers
3. Include installation, settings config, and full integration
DOCS: https://supermemory.ai/docs
Claude Code Skill
Interactive setup for Claude Code users.Install
Copy
Ask AI
# 1. Clone repo
git clone https://github.com/supermemoryai/supermemory.git
# 2. Copy skill
mkdir -p ~/.claude/skills
cp supermemory/.claude/skills/supermemory-integrate.md ~/.claude/skills/
# 3. Restart Claude Code
Use
Copy
Ask AI
/supermemory-integrate