Skip to main content
Build stateful agents with LangGraph that remember context across sessions. Supermemory handles memory storage and retrieval while LangGraph manages your graph-based conversation flow.

Overview

This guide shows how to integrate Supermemory with LangGraph to create agents that:
  • Maintain user context through automatic profiling
  • Store and retrieve relevant memories at each node
  • Use conditional logic to decide what’s worth remembering
  • Combine short-term (session) and long-term (cross-session) memory

Setup

Install the required packages:
pip install langgraph langchain-openai supermemory python-dotenv
Configure your environment:
# .env
SUPERMEMORY_API_KEY=your-supermemory-api-key
OPENAI_API_KEY=your-openai-api-key
Get your Supermemory API key from console.supermemory.ai.

Basic integration

A minimal agent that fetches user context before responding and stores the conversation after:
from typing import Annotated, TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain_openai import ChatOpenAI
from langchain_core.messages import SystemMessage, HumanMessage
from supermemory import Supermemory
from dotenv import load_dotenv

load_dotenv()

llm = ChatOpenAI(model="gpt-4o")
memory = Supermemory()

class State(TypedDict):
    messages: Annotated[list, add_messages]
    user_id: str

def agent(state: State):
    user_id = state["user_id"]
    messages = state["messages"]
    user_query = messages[-1].content

    # Fetch user profile with relevant memories
    profile_result = memory.profile(container_tag=user_id, q=user_query)

    # Build context from profile
    static_facts = profile_result.profile.static or []
    dynamic_context = profile_result.profile.dynamic or []
    search_results = profile_result.search_results.results if profile_result.search_results else []

    context = f"""
User Background:
{chr(10).join(static_facts) if static_facts else 'No profile yet.'}

Recent Context:
{chr(10).join(dynamic_context) if dynamic_context else 'No recent activity.'}

Relevant Memories:
{chr(10).join([r.memory or r.chunk for r in search_results]) if search_results else 'None found.'}
"""

    system = SystemMessage(content=f"You are a helpful assistant.\n\n{context}")
    response = llm.invoke([system] + messages)

    # Store the interaction
    memory.add(
        content=f"User: {user_query}\nAssistant: {response.content}",
        container_tag=user_id
    )

    return {"messages": [response]}

# Build the graph
graph = StateGraph(State)
graph.add_node("agent", agent)
graph.add_edge(START, "agent")
graph.add_edge("agent", END)
app = graph.compile()

# Run it
result = app.invoke({
    "messages": [HumanMessage(content="Hi! I'm working on a Python project.")],
    "user_id": "user_123"
})
print(result["messages"][-1].content)

Core concepts

User profiles

Supermemory automatically builds user profiles from stored memories:
  • Static facts: Long-term information (preferences, expertise, background)
  • Dynamic context: Recent activity and current focus
result = memory.profile(
    container_tag="user_123",
    q="optional search query"  # Also returns relevant memories
)

print(result.profile.static)   # ["User is a Python developer", "Prefers functional style"]
print(result.profile.dynamic)  # ["Working on async patterns", "Debugging rate limiting"]

Memory storage

Content you add gets processed into searchable memories:
# Store a conversation
memory.add(
    content="User asked about graph traversal. Explained BFS vs DFS.",
    container_tag="user_123",
    metadata={"topic": "algorithms", "type": "conversation"}
)

# Store a document
memory.add(
    content="https://langchain-ai.github.io/langgraph/",
    container_tag="user_123"
)
Search returns both extracted memories and document chunks:
results = memory.search.memories(
    q="graph algorithms",
    container_tag="user_123",
    search_mode="hybrid",
    limit=5
)

for r in results.results:
    print(r.memory or r.chunk, r.similarity)

Complete example: support agent

A support agent that learns from past tickets and adapts to each user’s technical level:
from typing import Annotated, TypedDict, Optional
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.checkpoint.memory import MemorySaver
from langchain_openai import ChatOpenAI
from langchain_core.messages import SystemMessage, HumanMessage
from supermemory import Supermemory
from dotenv import load_dotenv

load_dotenv()

class SupportAgent:
    def __init__(self):
        self.llm = ChatOpenAI(model="gpt-4o", temperature=0.3)
        self.memory = Supermemory()
        self.app = self._build_graph()

    def _build_graph(self):
        class State(TypedDict):
            messages: Annotated[list, add_messages]
            user_id: str
            context: str
            category: Optional[str]

        def retrieve_context(state: State):
            """Fetch user profile and relevant past tickets."""
            user_id = state["user_id"]
            query = state["messages"][-1].content

            result = self.memory.profile(
                container_tag=user_id,
                q=query,
                threshold=0.5
            )

            static = result.profile.static or []
            dynamic = result.profile.dynamic or []
            memories = result.search_results.results if result.search_results else []

            context = f"""
## User Profile
{chr(10).join(f"- {fact}" for fact in static) if static else "New user, no history."}

## Current Context
{chr(10).join(f"- {ctx}" for ctx in dynamic) if dynamic else "No recent activity."}

## Related Past Tickets
{chr(10).join(f"- {m.memory}" for m in memories[:3]) if memories else "No similar issues found."}
"""
            return {"context": context}

        def categorize(state: State):
            """Determine ticket category for routing."""
            query = state["messages"][-1].content.lower()

            if any(word in query for word in ["billing", "payment", "charge", "invoice"]):
                return {"category": "billing"}
            elif any(word in query for word in ["bug", "error", "broken", "crash"]):
                return {"category": "technical"}
            else:
                return {"category": "general"}

        def respond(state: State):
            """Generate a response using context."""
            category = state.get("category", "general")
            context = state.get("context", "")

            system_prompt = f"""You are a support agent. Category: {category}

{context}

Guidelines:
- Match explanation depth to the user's technical level
- Reference past interactions when relevant
- Be direct and helpful"""

            system = SystemMessage(content=system_prompt)
            response = self.llm.invoke([system] + state["messages"])

            return {"messages": [response]}

        def store_interaction(state: State):
            """Save the ticket for future context."""
            user_msg = state["messages"][-2].content
            ai_msg = state["messages"][-1].content
            category = state.get("category", "general")

            self.memory.add(
                content=f"Support ticket ({category}): {user_msg}\nResolution: {ai_msg[:300]}",
                container_tag=state["user_id"],
                metadata={"type": "support_ticket", "category": category}
            )

            return {}

        # Build the graph
        graph = StateGraph(State)
        graph.add_node("retrieve", retrieve_context)
        graph.add_node("categorize", categorize)
        graph.add_node("respond", respond)
        graph.add_node("store", store_interaction)

        graph.add_edge(START, "retrieve")
        graph.add_edge("retrieve", "categorize")
        graph.add_edge("categorize", "respond")
        graph.add_edge("respond", "store")
        graph.add_edge("store", END)

        checkpointer = MemorySaver()
        return graph.compile(checkpointer=checkpointer)

    def handle(self, user_id: str, message: str, thread_id: str) -> str:
        """Process a support request."""
        config = {"configurable": {"thread_id": thread_id}}

        result = self.app.invoke(
            {"messages": [HumanMessage(content=message)], "user_id": user_id},
            config=config
        )

        return result["messages"][-1].content


# Usage
if __name__ == "__main__":
    agent = SupportAgent()

    # First interaction
    response = agent.handle(
        user_id="customer_alice",
        message="The API is returning 429 errors when I make requests",
        thread_id="ticket_001"
    )
    print(response)

    # Follow-up (agent remembers context)
    response = agent.handle(
        user_id="customer_alice",
        message="I'm only making 10 requests per minute though",
        thread_id="ticket_001"
    )
    print(response)

Advanced patterns

Conditional memory storage

Not everything is worth remembering. Use conditional edges to filter:
def should_store(state: State) -> str:
    """Skip storing trivial messages."""
    last_msg = state["messages"][-1].content.lower()

    skip_phrases = ["thanks", "ok", "got it", "bye"]
    if len(last_msg) < 20 or any(p in last_msg for p in skip_phrases):
        return "skip"
    return "store"

graph.add_conditional_edges("respond", should_store, {
    "store": "store",
    "skip": END
})

Parallel memory operations

Fetch memories and categorize at the same time:
from langgraph.graph import StateGraph, START, END

graph = StateGraph(State)
graph.add_node("retrieve", retrieve_context)
graph.add_node("categorize", categorize)
graph.add_node("respond", respond)

# Both run in parallel after START
graph.add_edge(START, "retrieve")
graph.add_edge(START, "categorize")

# Both must complete before respond
graph.add_edge("retrieve", "respond")
graph.add_edge("categorize", "respond")
graph.add_edge("respond", END)

Metadata filtering

Organize memories by project, topic, or any custom field:
# Store with metadata
memory.add(
    content="User prefers detailed error messages with stack traces",
    container_tag="user_123",
    metadata={
        "type": "preference",
        "project": "api-v2",
        "priority": "high"
    }
)

# Search with filters
results = memory.search.memories(
    q="error handling preferences",
    container_tag="user_123",
    filters={
        "AND": [
            {"key": "type", "value": "preference"},
            {"key": "project", "value": "api-v2"}
        ]
    }
)

Combining session and long-term memory

LangGraph’s checkpointer handles within-session state. Supermemory handles cross-session memory. Use both:
from langgraph.checkpoint.memory import MemorySaver

# Session memory (cleared when thread ends)
checkpointer = MemorySaver()
app = graph.compile(checkpointer=checkpointer)

# Long-term memory (persists across sessions)
# Handled by Supermemory in your nodes

Next steps