Skip to main content
CrewAI agents don’t remember anything between runs by default. Supermemory fixes that. You get a memory layer that stores what happened, who the user is, and what they care about. Your crews can pick up where they left off.

What you can do

  • Give agents access to user preferences and past interactions
  • Store crew outputs so future runs can reference them
  • Search memories to give agents relevant context before they start

Setup

Install the required packages:
pip install crewai supermemory python-dotenv
Configure your environment:
# .env
SUPERMEMORY_API_KEY=your-supermemory-api-key
OPENAI_API_KEY=your-openai-api-key
Get your Supermemory API key from console.supermemory.ai.

Basic Integration

Initialize Supermemory and inject user context into your agent’s backstory:
import os
from crewai import Agent, Task, Crew, Process
from supermemory import Supermemory
from dotenv import load_dotenv

load_dotenv()

memory = Supermemory()

def build_context(user_id: str, query: str) -> str:
    """Fetch user profile and relevant memories."""
    result = memory.profile(container_tag=user_id, q=query)

    static = result.profile.static or []
    dynamic = result.profile.dynamic or []
    memories = result.search_results.results if result.search_results else []

    return f"""
User Profile:
{chr(10).join(static) if static else 'No profile data.'}

Current Context:
{chr(10).join(dynamic) if dynamic else 'No recent activity.'}

Relevant History:
{chr(10).join([m.memory or m.chunk for m in memories[:5]]) if memories else 'None.'}
"""

def create_agent_with_memory(user_id: str, role: str, goal: str, query: str) -> Agent:
    """Create an agent with user context baked into its backstory."""
    context = build_context(user_id, query)

    return Agent(
        role=role,
        goal=goal,
        backstory=f"""You have access to the following information about the user:
{context}

Use this context to personalize your work.""",
        verbose=True
    )

Core Concepts

User profiles

Supermemory tracks two kinds of user data:
  • Static facts: Things that don’t change often (preferences, job title, tech stack)
  • Dynamic context: What the user is working on right now
result = memory.profile(
    container_tag="user_abc",
    q="project planning"  # Optional: also returns relevant memories
)

print(result.profile.static)   # ["Prefers Agile methodology", "Senior engineer"]
print(result.profile.dynamic)  # ["Working on Q2 roadmap", "Focused on API design"]

Storing memories

Save crew outputs so future runs can reference them:
def store_crew_result(user_id: str, task_description: str, result: str):
    """Save crew output as a memory."""
    memory.add(
        content=f"Task: {task_description}\nResult: {result}",
        container_tag=user_id,
        metadata={"type": "crew_execution"}
    )

Searching memories

Pull up past interactions before running a crew:
results = memory.search.memories(
    q="previous project recommendations",
    container_tag="user_abc",
    search_mode="hybrid",
    limit=10
)

for r in results.results:
    print(r.memory or r.chunk)

Example: research crew with memory

This crew has two agents: a researcher and a writer. The researcher adjusts its technical depth based on the user’s background. The writer remembers formatting preferences. Both can see what the user has asked about before.
import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import SerperDevTool
from supermemory import Supermemory
from dotenv import load_dotenv

load_dotenv()

class ResearchCrew:
    def __init__(self):
        self.memory = Supermemory()
        self.search_tool = SerperDevTool()

    def get_user_context(self, user_id: str, topic: str) -> dict:
        """Retrieve user profile and related research history."""
        result = self.memory.profile(
            container_tag=user_id,
            q=topic,
            threshold=0.5
        )

        return {
            "expertise": result.profile.static or [],
            "focus": result.profile.dynamic or [],
            "history": [m.memory for m in (result.search_results.results or [])[:3]]
        }

    def create_researcher(self, context: dict) -> Agent:
        """Build a researcher agent with user context."""
        expertise_note = ""
        if context["expertise"]:
            expertise_note = f"The user has this background: {', '.join(context['expertise'])}. Adjust technical depth accordingly."

        history_note = ""
        if context["history"]:
            history_note = f"Previous research on related topics: {'; '.join(context['history'])}"

        return Agent(
            role="Research Analyst",
            goal="Conduct research tailored to the user's expertise level",
            backstory=f"""You research topics and synthesize findings into clear summaries.
{expertise_note}
{history_note}""",
            tools=[self.search_tool],
            verbose=True
        )

    def create_writer(self, context: dict) -> Agent:
        """Build a writer agent that matches user preferences."""
        style_note = "Write in a clear, technical style."
        for fact in context.get("expertise", []):
            if "non-technical" in fact.lower():
                style_note = "Write in plain language, avoiding jargon."
                break

        return Agent(
            role="Content Writer",
            goal="Transform research into readable content",
            backstory=f"""You write clear, engaging content. {style_note}""",
            verbose=True
        )

    def research(self, user_id: str, topic: str) -> str:
        """Run the research crew and store results."""
        context = self.get_user_context(user_id, topic)

        researcher = self.create_researcher(context)
        writer = self.create_writer(context)

        research_task = Task(
            description=f"Research the following topic: {topic}",
            expected_output="Detailed findings with sources",
            agent=researcher
        )

        writing_task = Task(
            description="Write a summary based on the research findings",
            expected_output="A clear, structured summary",
            agent=writer
        )

        crew = Crew(
            agents=[researcher, writer],
            tasks=[research_task, writing_task],
            process=Process.sequential,
            verbose=True
        )

        result = crew.kickoff()

        # Store for future sessions
        self.memory.add(
            content=f"Research on '{topic}': {str(result)[:500]}",
            container_tag=user_id,
            metadata={"type": "research", "topic": topic}
        )

        return str(result)


if __name__ == "__main__":
    crew = ResearchCrew()

    # Teach preferences
    crew.memory.add(
        content="User prefers concise summaries with bullet points",
        container_tag="researcher_1"
    )

    # Run research
    result = crew.research("researcher_1", "latest developments in AI agents")
    print(result)

More patterns

Crews with multiple users

Sometimes you need context from several users at once:
def create_collaborative_context(user_ids: list[str], topic: str) -> str:
    """Aggregate context from multiple users."""
    combined = []

    for user_id in user_ids:
        result = memory.profile(container_tag=user_id, q=topic)
        if result.profile.static:
            combined.append(f"{user_id}: {', '.join(result.profile.static[:3])}")

    return "\n".join(combined) if combined else "No shared context available."

Only storing successful runs

You might not want to save every crew output:
def store_if_successful(user_id: str, task: str, result: str, success: bool):
    """Only store successful task completions."""
    if not success:
        return

    memory.add(
        content=f"Completed: {task}\nOutcome: {result}",
        container_tag=user_id,
        metadata={"type": "success", "task": task}
    )

Using metadata to organize memories

Metadata lets you filter memories by project, agent, or whatever else makes sense:
# Store with metadata
memory.add(
    content="Research findings on distributed systems",
    container_tag="user_123",
    metadata={
        "project": "infrastructure-review",
        "agents": ["researcher", "writer"],
        "confidence": "high"
    }
)

# Search with filters
results = memory.search.memories(
    q="distributed systems",
    container_tag="user_123",
    filters={
        "AND": [
            {"key": "project", "value": "infrastructure-review"},
            {"key": "confidence", "value": "high"}
        ]
    }
)