Add memory capabilities to the official OpenAI SDKs using Supermemory’s function calling tools. These plugins provide seamless integration with OpenAI’s chat completions and function calling features.

Installation

# Using uv (recommended)
uv add supermemory-openai-sdk

# Or with pip
pip install supermemory-openai-sdk

Quick Start

import asyncio
import openai
from supermemory_openai import SupermemoryTools, execute_memory_tool_calls

async def main():
    # Initialize OpenAI client
    client = openai.AsyncOpenAI(api_key="your-openai-api-key")

    # Initialize Supermemory tools
    tools = SupermemoryTools(
        api_key="your-supermemory-api-key",
        config={"project_id": "my-project"}
    )

    # Chat with memory tools
    response = await client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "system",
                "content": "You are a helpful assistant with access to user memories."
            },
            {
                "role": "user",
                "content": "Remember that I prefer tea over coffee"
            }
        ],
        tools=tools.get_tool_definitions()
    )

    # Handle tool calls if present
    if response.choices[0].message.tool_calls:
        tool_results = await execute_memory_tool_calls(
            api_key="your-supermemory-api-key",
            tool_calls=response.choices[0].message.tool_calls,
            config={"project_id": "my-project"}
        )
        print("Tool results:", tool_results)

    print(response.choices[0].message.content)

asyncio.run(main())

Configuration

Memory Tools Configuration

from supermemory_openai import SupermemoryTools

tools = SupermemoryTools(
    api_key="your-supermemory-api-key",
    config={
        "project_id": "my-project",  # or use container_tags
        "base_url": "https://custom-endpoint.com",  # optional
    }
)

Available Tools

Search Memories

Search through user memories using semantic search:
# Search memories
result = await tools.search_memories(
    information_to_get="user preferences",
    limit=10,
    include_full_docs=True
)
print(f"Found {len(result.memories)} memories")

Add Memory

Store new information in memory:
# Add memory
result = await tools.add_memory(
    memory="User prefers tea over coffee"
)
print(f"Added memory with ID: {result.memory.id}")

Fetch Memory

Retrieve specific memory by ID:
# Fetch specific memory
result = await tools.fetch_memory(
    memory_id="memory-id-here"
)
print(f"Memory content: {result.memory.content}")

Individual Tools

Use tools separately for more granular control:
from supermemory_openai import (
    create_search_memories_tool,
    create_add_memory_tool,
    create_fetch_memory_tool
)

search_tool = create_search_memories_tool("your-api-key")
add_tool = create_add_memory_tool("your-api-key")
fetch_tool = create_fetch_memory_tool("your-api-key")

# Use individual tools in OpenAI function calling
tools_list = [search_tool, add_tool, fetch_tool]

Complete Chat Example

Here’s a complete example showing a multi-turn conversation with memory:
import asyncio
import openai
from supermemory_openai import SupermemoryTools, execute_memory_tool_calls

async def chat_with_memory():
    client = openai.AsyncOpenAI()
    tools = SupermemoryTools(
        api_key="your-supermemory-api-key",
        config={"project_id": "chat-example"}
    )

    messages = [
        {
            "role": "system",
            "content": """You are a helpful assistant with memory capabilities.
            When users share personal information, remember it using addMemory.
            When they ask questions, search your memories to provide personalized responses."""
        }
    ]

    while True:
        user_input = input("You: ")
        if user_input.lower() == 'quit':
            break

        messages.append({"role": "user", "content": user_input})

        # Get AI response with tools
        response = await client.chat.completions.create(
            model="gpt-4o",
            messages=messages,
            tools=tools.get_tool_definitions()
        )

        # Handle tool calls
        if response.choices[0].message.tool_calls:
            messages.append(response.choices[0].message)

            tool_results = await execute_memory_tool_calls(
                api_key="your-supermemory-api-key",
                tool_calls=response.choices[0].message.tool_calls,
                config={"project_id": "chat-example"}
            )

            messages.extend(tool_results)

            # Get final response after tool execution
            final_response = await client.chat.completions.create(
                model="gpt-4o",
                messages=messages
            )

            assistant_message = final_response.choices[0].message.content
        else:
            assistant_message = response.choices[0].message.content
            messages.append({"role": "assistant", "content": assistant_message})

        print(f"Assistant: {assistant_message}")

# Run the chat
asyncio.run(chat_with_memory())

Error Handling

Handle errors gracefully in your applications:
from supermemory_openai import SupermemoryTools
import openai

async def safe_chat():
    try:
        client = openai.AsyncOpenAI()
        tools = SupermemoryTools(api_key="your-api-key")

        response = await client.chat.completions.create(
            model="gpt-4o",
            messages=[{"role": "user", "content": "Hello"}],
            tools=tools.get_tool_definitions()
        )

    except openai.APIError as e:
        print(f"OpenAI API error: {e}")
    except Exception as e:
        print(f"Unexpected error: {e}")

API Reference

Python SDK

SupermemoryTools

Constructor
SupermemoryTools(
    api_key: str,
    config: Optional[SupermemoryToolsConfig] = None
)
Methods
  • get_tool_definitions() - Get OpenAI function definitions
  • search_memories(information_to_get, limit, include_full_docs) - Search user memories
  • add_memory(memory) - Add new memory
  • fetch_memory(memory_id) - Fetch specific memory by ID
  • execute_tool_call(tool_call) - Execute individual tool call

execute_memory_tool_calls

execute_memory_tool_calls(
    api_key: str,
    tool_calls: List[ToolCall],
    config: Optional[SupermemoryToolsConfig] = None
) -> List[dict]

JavaScript SDK

supermemoryTools

supermemoryTools(
  apiKey: string,
  config?: { projectId?: string; baseUrl?: string }
)

createToolCallExecutor

createToolCallExecutor(
  apiKey: string,
  config?: { projectId?: string; baseUrl?: string }
) -> (toolCall: OpenAI.Chat.ChatCompletionMessageToolCall) => Promise<any>

Environment Variables

Set these environment variables:
SUPERMEMORY_API_KEY=your_supermemory_key
OPENAI_API_KEY=your_openai_key
SUPERMEMORY_BASE_URL=https://custom-endpoint.com  # optional

Development

Python Setup

# Install uv
curl -LsSf https://astral.sh/uv/install.sh | sh

# Setup project
git clone <repository-url>
cd packages/openai-sdk-python
uv sync --dev

# Run tests
uv run pytest

# Type checking
uv run mypy src/supermemory_openai

# Formatting
uv run black src/ tests/
uv run isort src/ tests/

JavaScript Setup

# Install dependencies
npm install

# Run tests
npm test

# Type checking
npm run type-check

# Linting
npm run lint

Next Steps